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1 Introduction

A position estimator using odometry suffers from systematic and non-systematic errors [1]. The system-

atic errors tend to be the functions of the system caused by the wheel diameter difference, inaccurate

wheel base length, etc. The non-systematic errors are independent of the robot, and they are caused

by wheel slippage, an imperfect floor surface, etc.

The systematic errors can be predicted and effectively compensated for as in [1,2]. The non-systematic

errors, however, cannot be compensated for because they are random errors. Thus, researchers have

adopted the Gaussian probability to express the non-systematic error. Sebastian Thrun, et al . [3] showed

that the Gaussian probability yields an error bound of odometry which looks like a banana (Fig. 1(a)).

However, there is no model which can represent this banana shape. Thus, researchers [4–8] have used

a covariance matrix whose ellipse can approximate the banana-like shape (Fig. 1(b)).

However, a precise knowledge of the covariance matrix is difficult to obtain because no information on the

ground truth can be provided. Thus some researchers have simply assumed the covariance matrix to be

a multiple of travel distance and a constant whose value is intuitively selected [6,7]. Wang [4] proposed

an approximation method of the covariance matrix, but his approach is valid only in simulation. Also,

Chong [5], Bengtsson [8], Martinelli [9], and Kelly [10] suggested covariance estimation methods, but

there techniques have not been verified via extensive experiments.

In our previous paper [11], we suggested an empirical method of covariance matrix estimation based
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Figure 1: If a robot follows a straight line, an error bound of odometry will look like a banana as in
(a). To approximate this banana shape, researchers have used a covariance matrix whose ellipse covers
the banana shape as in (b).

on the PC-method [2]. However, the previous method did not consider the covariance matrix in the

robot’s heading angle. As a result, an estimated covariance matrix yields an error ellipse whose major

axes are aligned with the world coordinates. This does not reflect the real phenomena.

For example, a robot which moved linearly at a 45◦ angle relative to the coordinate system as in Fig. 2

would have a real error bound like the dotted ellipse. However, our previous method will yield an error

ellipse whose major axes are aligned with the world coordinate. To cover the real error bound without

axes rotation, the previous method intentionally enlarged the size of the ellipse. In other words, it

produced an overestimated covariance matrix.

In this paper, we propose a new covariance estimation method which also considers the covariance of

the robot’s heading angle. This new method precisely estimates the covariance matrix whose axes are

not aligned with the world coordinate and thus reflects the real phenomena more closely.

The basic idea of this method is as follows: A robot, whose systematic errors are fully compensated for,
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real error bound

overestimated error bound
by previous method

world coordinate

Figure 2: A robot moved a straight line rotated by 45◦. The real error bound, then, will be like the
dotted ellipse but our previous method will yield an overestimated error bound whose axes are aligned
with the world coordinate.

navigates the same path twice. There are, then, two odometry paths that do not overlap each other

due to non-systematic errors. Thus a set of values which makes the two odometry paths coincide is

the non-systematic errors. Once these values are acquired, we can calculate expectation values of the

non-systematic errors. The covariance matrix can be estimated by using these expectation values.

We believe that the proposed method can be used for all mobile bases. However, in this paper, we apply

the proposed method to synchro and differential drive robots whose odometry models are given. Recall

that a synchro-drive robot has three or four wheels that translate and rotate in a synchronous manner.

Its motion is accomplished by two control motors: one for translation and the other for rotation. The

differential drive robot has two control motors that can be controlled independently.

For validation purposes, two robots (a synchro-drive robot and a differential drive robot) were ran 200

times along 4 different paths. These extensive experimental results validate that the covariance matrix

acquired by the proposed method is accurate enough for practical use (less than 9 % offset from the
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Figure 3: Schematic explanation of the PC-method. (a) is a plot before correction and (b) is a plot
after correction.

ideal value).

This paper is organized as follows: In section 2, the PC-method is briefly introduced. The method of

covariance matrix estimation is explained in section 3. The experimental results are shown in sections

4 and 5 for the synchro and the differential drive robots. A conclusion then follows.

2 Description of the PC-method

The PC-method [2] is based on the idea that a sensor-based navigation through the Generalized Voronoi

Graph (or GVG) bounds the absolute error while odometry does not. Recall that the GVG [12] is a set

of points whose edges and nodes are equidistant to two or more objects. Thus, if a robot navigates the

GVG twice, once forward and then backward, two different odometry paths are generated, but along

the same path on the GVG in the real world.

The sensor and control errors can be assumed to be small enough to be ignored during the GVG

navigation. Then if the two different odometry paths are compensated for using a true odometry error
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model and real error parameters, the compensated paths will overlap. Thus, once we have the two

different odometry paths and the true odometry error model, we can estimate the error parameters

which minimize the position errors between the two paths.

The estimation procedure of the PC-method is given below with a schematic explanation in Fig. 3.

1. Navigate a GVG path from a start node to an end node. The start and
end nodes can be chosen arbitrarily as long as the length between the
two nodes is long “enough” for parameter estimation. This first set of
data is denoted as a Forward Odometry Path (FOP).

2. Turn the robot 180◦ and navigate from the end node to the start node.
We will denote this odometry data as a Backward Odometry Path
(BOP).

3. Take an initial guess of the error parameters which produce a Cor-
rected FOP (CFOP) and a Corrected BOP (CBOP) using the given
error model.

4. Starting with this initial guess, perform optimizations to find the error
parameters that minimize the position error between the CFOP and the
CBOP.

3 Covariance estimation method

In this section, we propose a covariance estimation technique based on the PC-method. This new

approach calculates the covariance matrix of a corrected odometry (an odometry calibrated by the

odometry error model and the error parameters) in a natural manner.

If the systematic errors are fully compensated for, then encoder values are the sum of the real signals
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and the non-systematic errors. These values of the synchro-drive robot are

∆D(k) = ∆Dreal(k) + εD(k),

∆Θ(k) = ∆Θreal(k) + εΘ(k),

(1)

where (∆D(k),∆Θ(k)),(∆Dreal(k), ∆Θreal(k)) and (εD(k), εΘ(k)) are the stepwise translation/rotation,

the real stepwise translation/rotation and translational/rotational non-systematic errors at the k-th

step.

Similarly, the encoder values of the differential drive robot are

δr(k) = δrreal(k) + εr(k),

δl(k) = δlreal(k) + εl(k),

(2)

where (δr(k), δl(k)), (δrreal, δlreal) and (εr(k), εl(k)) are a stepwise increase, the real increase and the

non-systematic errors of the right/left wheels at the k-th step.

The non-systematic errors can be estimated from the corrected forward odometry path (CFOP) and

the corrected backward odometry path (CBOP). If the CFOP exactly matches the GVG, deviations

between the CFOP and the CBOP are induced by the non-systematic errors. Thus the non-systematic

errors can be estimated by calculating ε(·) that makes a CBOP point overlap with its matching CFOP

position as shown in Fig. 4.

Using these ε(·), sample variances of stepwise translation and rotation can be calculated. The sample

variances of the synchro drive robot are

σ2
∆D =

1
n− 1

n∑

i=1

(εD(i)− εD)2,

σ2
∆Θ =

1
n− 1

n∑

i=1

(εΘ(i)− εΘ)2,

(3)
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Figure 4: Method of approximating the non-systematic errors: (a) The CFOP/CBOP do not perfectly
overlap even after the systematic error compensation. (b) ε(·)(1) can be found which changes the first
CBOP point into its matching CFOP point. This procedure can be applied to succeeding matching
pairs as in (c) and (d).

where n is the number of samples in the CFOP and ε(·) = 1
n

∑n
i=1 ε(·)(i).

For differential drive robots, ∆D(k) = δr(k)+δl(k)
2 and ∆Θ(k) = δr(k)−δl(k)

b where b is the wheel base

length. Thus the variances of stepwise translation and rotation are

σ2
∆D =

1
4n

{
n∑

i=1

(εr(i)− εr)2 +
n∑

i=1

(εl(i)− εl)2
}

,

σ2
∆Θ =

1
b2n

{
n∑

i=1

(εr(i)− εr)2 +
n∑

i=1

(εl(i)− εl)2
}

.

(4)

Among the state (x, y, θ), the variance of the heading angle (denote it σ2
θ) will be derived first. The

kinematic equation of θ is

θ(k + 1) = θ(k) + ∆Θ(k). (5)
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From (5), σ2
θ can be calculated as

σ2
θ(k + 1) = σ2

θ(k) + var[∆Θ(k)] + cov[θ(k), ∆Θ(k)] + cov[∆Θ(k), θ(k)]

= σ2
θ(k) + var[∆Θ(k)],

(6)

because θ(k) and ∆Θ(k) are independent [4]. Here var[a] represents the variance of a, and cov[a, b] is

the covariance between a and b. The var[∆Θ(k)] can be given as

var[∆Θ(k)] =
|∆Θ(k)|

∆Θ
σ2

∆Θ, (7)

where ∆Θ = 1
n

∑n
i=1 ∆Θ(k). Note that σ2

∆Θ is multiplied by |∆Θ(k)|
∆Θ

, because σ2
∆Θ is the variance during

∆Θ.

To find variances of (x, y), we write the kinematic equation as

[
x(k + 1)
y(k + 1)

]
=

[
x(k)
y(k)

]
+

[
∆D(k) cos(θ(k) + ∆Θ(k)

2 )
∆D(k) sin(θ(k) + ∆Θ(k)

2 )

]
≡

[
x(k)
y(k)

]
+

[
ux(k)
uy(k)

]
(8)

A covariance matrix of (x(k), y(k))T is defined as

P (k) = cov((x(k), y(k))T ) =
[

σ2
x σxy

σxy σ2
y

]
, (9)

where σab denotes the covariance of a and b. The covariance matrix of (ux(k), uy(k))T is

U(k) = cov((ux(k), uy(k))T ) =
[

σ2
ux

σuxuy

σuxuy σ2
uy

]
. (10)

Referring to [13], these values can be calculated as




σ2
ux

σuxuy

σ2
uy


 =




∆D2(k)σ2
ξ (k) sin2 ξ(k) + σ2

∆D cos2 ξ(k)
(σ2

∆D −∆D2(k)σ2
ξ (k)) sin ξ(k) cos ξ(k)

∆D2(k)σ2
ξ (k) cos2 ξ(k) + σ2

∆Dsin2ξ(k)


 , (11)

where ξ(k) = θ(k) + ∆Θ(k)
2 and σ2

ξ (k) = σ2
θ(k) + |∆Θ(k)|

∆Θ

σ2
∆Θ
4 .
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Now, the covariance matrix can be updated as

P (k + 1) = P (k) + U(k) + cov(P (k),U(k)) + cov(U(k), P (k))

= P (k) + U(k),

(12)

because (x(k), y(k))T and (ux(k), uy(k))T are independent. As noted by [5], (12) is an inconsistent

model. In other words, if the covariance is propagated in different time steps for the same path, it

yields different results. This can be solved by updating (12) for every ∆D = 1
n

∑n
i=1 ∆D(i).

Three remarks should made here. First, the covariance matrix is overestimated in a rugged environment

(Fig. 5) because, in a rugged place, the FOP and the BOP are likely to depart from the real GVG

because of the limited sensor and control ability. This method, therefore, is recommended only for

smooth environments for accurate covariance matrix estimation. Second, it is important to precisely

calibrate the systematic error before calculating the covariance matrix. If large amounts of systematic

errors remain, the CFOP and CBOP are mainly affected by these systematic errors (Fig. 6). Use of

an inadequately calibrated CFOP and CBOP will yield a highly overestimated covariance matrix. We,

therefore, recommend a precise calibration of the systematic errors. Third, we prove that the covariance

matrix is positive semi-definite in appendix A.
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Figure 5: Typical shape of rugged environments.
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CB OP
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Errors by the remaining systematic errors Errors by the non-systematic errors

CFOP and CBOP affected by the remaining
systematic and non-systematic errors
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CB OP

Figure 6: Large uncompensated systematic errors affect the CFOP and CBOP strongly.
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Figure 7: Forward and backward odometry paths for the error parameters estimation of the synchro-
drive robot. (a) is the FOP/BOP and (b) is the CFOP/CBOP.

4 Experiment 1: synchro-drive robot

The proposed method was applied to a synchro-drive robot to validate the performance of the covariance

matrix estimation.

We ran the robot through a 94.4m long GVG path (Fig. 7) to get the forward odometry path (FOP)/the

backward odometry path (BOP) and the corrected FOP (CFOP)/the corrected BOP (CBOP).

To verify that the systematic errors are compensated for, the robot was set to yield two sets of odometry

data. One is the raw odometry data and the other is the corrected odometry whose systematic errors

are compensated for. The robot, then, navigated 177.2m, returning to the starting point. The speed of

the robot, 0.13m/s, was intentionally kept low to minimize non-systematic errors. Two maps from the

raw odometry and the corrected odometry are shown in Fig. 8.
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Figure 8: The constructed maps by the synchro-drive robot. (a) is an odometry map and (b) is a
PC-method corrected map.
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Figure 9: Endpoint errors after 177.2m of navigation with the synchro-drive robot.
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This experiment was repeated a total of three times. Endpoint errors, which are simply the final points

estimated by the odometry because the real end point is the same as the real start point, were analyzed

in Fig. 9. The average error of the raw odometry was 19.52m, and that of the corrected odometry was

0.28m, which is a 70.6 fold enhancement in this experiment. These results validate our assumption that

the systematic errors are compensated for.

Once the systematic errors are removed, we can estimate the covariance matrix from the CFOP and

CBOP. The variances of the non-systematic errors for ∆D = 1.45e−2m,∆Θ = 4.38e−3rad were calcu-

lated by (3) as

σ2
∆D = 4.24e−6m2,

σ2
∆Θ = 7.97e−5rad2.

(13)

To verify these variances, we ran the robot 100 times along 4 different paths (25 times per each path).

The lengths of the paths were 20m, 40m, 50m and 80m as shown in Fig. 10. The velocity of the robot

was set as 0.13m/s, which is the same speed that was used for the FOP/BOP generation. We also ran

the robot on the same floor used for the FOP/BOP generation.

The probability density function (pdf) of the position uncertainty will have an arbitrary shape after

various motions. However, let us assume the pdf to be the Gaussian distribution for validation purposes.

Under this assumption, σ-bounds of the covariance matrices calculated by (12) are plotted in Fig. 11 for

various path lengths. Note that the volume of the 40m bound is relatively large because the 40m path

(Fig. 10(b)) has more detailed maneuvers than the others. These maneuvers increase σξ(k) in (11) and
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Figure 10: Four paths are navigated by the robot to verify the covariance matrix. The lengths of the
paths are (a) 20m, (b) 40m, (c) 50m and (d) 80m. The robot started and ended at the center of the
coordinate.
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Figure 11: σ-bounds of the covariance matrices of the synchro-drive robot.
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Figure 12: Data plot of ex,f

σx
versus ey,f

σy
of the synchro-drive robot.

expand the σ-bound. Also, note that the 50m and 80m bounds are stretched in the y and x directions,

respectively. This reflects the real phenomenon that the σ-bound grows in a direction perpendicular to

the heading angle of the robot.

To validate the accuracy of the covariance matrices, ex,f and ey,f are defined as

ex,f = xf − x̂f ,

ey,f = yf − ŷf ,

(14)

where (xf , yf ) and (x̂f , ŷf ) are an actual final point and a final point estimated by the corrected

odometry. For comparison, we normalized ex,f and ey,f over σx and σy and plotted 100 results in

Fig. 12. The circle in Fig. 12 is the 68% confidence bound. In other words, the probability of ex,f

σx
and

ey,f

σy
to be located within the unit circle is 68%. The experimental results show that the probability is

59%, which is 9% less than the ideal value. Therefore, we assert that the proposed method is capable

of estimating the covariance matrix.
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Figure 13: Forward and backward odometry paths for the error parameters estimation of the differential
drive robot. (a) is the FOP/BOP and (b) is the CFOP/CBOP.

Two remarks should be made. First, the expectation values of ex,f and ey,f are not zero because

there remain systematic errors that were not completely compensated for by the PC-method correction.

Second, coefficients of the covariance matrix grow as the moving speed increases. In our experiments, we

found out that the coefficient of the covariance matrix grows by 1.67 times at double speed of navigation.

5 Experiment 2: differential drive robot

The proposed method was also applied to a differential drive robot to validate the performance of the

covariance matrix estimation. The robot was run along a GVG path whose length was 138m to get the

FOP/BOP and the CFOP/CBOP as shown in Fig. 13.

To verify that that the systematic errors are compensated for, the robot was set to yield two sets of
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odometry data. One is the raw odometry data and the other is the corrected odometry data. Then the

robot, moving at 0.25m/s, navigated 719.1m, returning to the starting point. Two maps from the raw

odometry and the corrected odometry are shown in Fig. 14.

This experiment was repeated a total of three times. The endpoint errors were analyzed in Fig. 15. The

average error of the raw odometry was 25.7m, and that of the corrected odometry was 4.4m, which is

a 5.8 fold enhancement.

Once the systematic errors are removed, we can estimate the covariance matrix from the CFOP and

CBOP. The variances of the non-systematic errors for ∆D = 1.45e−2m,∆Θ = 4.39e−3rad were calcu-

lated by (4) as

σ2
∆D = 3.17e−6m2,

σ2
∆Θ = 1.07e−4rad2.

(15)

To verify these variances, we ran the robot 100 times along the 4 different paths shown in Fig. 10. The

velocity of the robot was set as 0.25m/s, the same speed that was used for the FOP/BOP generation.

Under the same Gaussian assumption as in Section 4, σ-bounds of the covariance matrices calculated

by (12) are plotted in Fig. 16 for various path lengths. Like the phenomena of the synchro-drive robot,

the volume of the 40m bound is relatively large, and the 50m, 80m bounds are stretched in y and x

directions, respectively.

To validate the accuracy of the covariance matrices, we normalized ex,f , ey,f over σx, σy and plotted 100

results in Fig. 17. The circle in Fig. 17 is the 68% confidence bound. The experimental results showed
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Figure 14: Maps constructed by the differential drive robot. (a) is an odometry map, and (b) is a
PC-method corrected map.
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Figure 15: Endpoint errors after 719.1m of navigation with the differential drive robot.
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Figure 16: σ-bounds of the covariance matrices of the differential drive robot.
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Figure 17: Data plot of ex,f
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versus ey,f

σy
of the differential drive robot.
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that the probability of the ex,f

σx
, ey,f

σy
to be located within the unit circle was 68%, exactly the same as

the ideal value. Although we are unable to argue that the covariance matrices are exact because the

position uncertainty does not take the Gaussian form, it is verifiably clear that the proposed method

can approximate the covariance matrix for differential drive robots.

6 Conclusion

This paper described a new method for an quantitative estimation of the covariance matrix which

represents the uncertainty of the odometry induced by non-systematic errors. The proposed method is

based on the idea that if a robot, whose systematic errors are fully compensated for, navigates the same

path twice, the two odometry paths should coincide without the non-systematic errors. The proposed

method predicted the non-systematic errors at the lowest level (i .e. the encoder level) so that the

effects of the non-systematic errors can be extended into all mobile states such as the heading angle of

the robot, the off-diagonal terms of the covariance matrix and so on.

Extensive experimental results showed that the covariance matrix estimated by the proposed method is

accurate enough for practical uses (9 % offset from the ideal value for the synchro drive, and reasonably

accurate for the differential drive robot).

Appendix A

Let us assume that the initial covariance matrix P (0) is positive semi-definite. Then P (k) is positive

semi-definite, if U(K) in (12) is positive semi-definite.

21



For simplicity, let us define

D ≡ ∆D2(k)

α ≡ σ2
∆D(k)

β ≡ σ2
ξ (k)

A ≡ sin ξ(k)

B ≡ cos ξ(k).

Then, the matrix U(k) can be simply written as

U(k) =
[

σ2
ux

σuxuy

σuxu)y σ2
uy

]
=

[
DβA2 + αB2 (α−Dβ)AB
(α−Dβ)AB DβB2 + αA2

]
.

The principal minors of U(k) are σ2
ux

and det(U(k)). Here σ2
ux
≥ 0 and det(U(k)) is

det(U(k)) = (DβA2 + αB2)× (DβB2 + αA2)− ((α−Dβ)AB)2

= Dαβ(A2 −B2)2 ≥ 0.

Thus U(k) is positive semi-definite because all principal minors are larger than zero. Therefore P (k) is

positive semi-definite. ■
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List of captions

1. If a robot follows a straight line, an error bound of odometry will look like a banana as in (a). To

approximate this banana shape, researchers have used a covariance matrix whose ellipse covers

the banana shape as in (b).

2. A robot moved a straight line rotated by 45◦. The real error bound, then, will be like the dotted

ellipse but our previous method will yield an overestimated error bound whose axes are aligned

with the world coordinate.

3. Schematic explanation of the PC-method. (a) is a plot before correction and (b) is a plot after

correction.

4. Method of approximating the non-systematic errors: (a) The CFOP/CBOP do not perfectly

overlap even after the systematic error compensation. (b) ε(·)(1) can be found which changes the

first CBOP point into its matching CFOP point. This procedure can be applied to succeeding

matching pairs as in (c) and (d).

5. Typical shape of rugged environments.

6. Large uncompensated systematic errors affect the CFOP and CBOP strongly.

7. Forward and backward odometry paths for the error parameters estimation of the synchro-drive

robot. (a) is the FOP/BOP and (b) is the CFOP/CBOP.
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8. The constructed maps by the synchro-drive robot. (a) is an odometry map and (b) is a PC-method

corrected map.

9. Endpoint errors after 177.2m of navigation with the synchro-drive robot.

10. Four paths are navigated by the robot to verify the covariance matrix. The lengths of the paths

are (a) 20m, (b) 40m, (c) 50m and (d) 80m. The robot started and ended at the center of the

coordinate.

11. σ-bounds of the covariance matrices of the synchro-drive robot.

12. Data plot of ex,f

σx
versus ey,f

σy
of the synchro-drive robot.

13. Forward and backward odometry paths for the error parameters estimation of the differential drive

robot. (a) is the FOP/BOP and (b) is the CFOP/CBOP.

14. Maps constructed by the differential drive robot. (a) is an odometry map, and (b) is a PC-method

corrected map.

15. Endpoint errors after 719.1m of navigation with the differential drive robot.

16. σ-bounds of the covariance matrices of the differential drive robot.

17. Data plot of ex,f

σx
versus ey,f

σy
of the differential drive robot.
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